The Gary Null Show - 01.18.23




The Gary Null Show show

Summary: Videos: Brought to you by… Pfizer! FORMER PFIZER VP, DR. MIKE YEADON – EVERYTHING WE HAVE BEEN TOLD ABOUT COVID-19 WAS A LIE Fauci didn’t want autopsies done on Covid victims. I wonder why? Dr. Peter McCullough SLAMS Pfizer board member over censorship and propaganda | Redacted News Study explores effects of dietary choline deficiency on neurologic and system-wide health Arizona State University, January 16, 2023 Choline, an essential nutrient produced in small amounts in the liver and found in foods including eggs, broccoli, beans, meat and poultry, is a vital ingredient for human health. A new study explores how a deficiency of dietary choline adversely affects the body and may be a missing piece in the puzzle of Alzheimer’s disease. It’s estimated that more than 90% of Americans are not meeting the recommended daily intake of choline. The current research, conducted in mice, suggests that dietary choline deficiency can have profound negative effects on the heart, liver and other organs. Lack of adequate choline is also linked with profound changes in the brain associated with Alzheimer’s disease. These include pathologies implicated in the development of two classic hallmarks of the illness: amyloid plaques, which aggregate in the intercellular spaces between neurons; and tau tangles, which condense within the bodies of neurons. The new research, led by scientists at Arizona State University and published in Aging Cell, describes pathologies in normal mice deprived of dietary choline and in choline-deficient transgenic mice, the latter of which already exhibit symptoms associated with the disease. In both cases, dietary choline deficiency results in liver damage, enlargement of the heart and neurologic alterations in the AD mice, typically accompanying Alzheimer’s disease and including increased levels of plaque-forming amyloid-beta protein and disease-linked alterations in tau protein. Further, the study illustrates that choline deficiency in mice causes significant weight gain, alterations in glucose metabolism (which are tied to conditions such as diabetes), and deficits in motor skills. In the case of humans, “it’s a twofold problem,” according to Ramon Velazquez, senior author of the study and assistant professor with the ASU-Banner Neurodegenerative Disease Research Center. “First, people don’t reach the adequate daily intake of choline established by the Institute of Medicine in 1998. And secondly, there is vast literature showing that the recommended daily intake amounts are not optimal for brain-related functions.” The research highlights a constellation of physical and neurological changes linked to choline deficiency. Sufficient choline in the diet reduces levels of the amino acid homocysteine, which has been recognized as a neurotoxin contributing to neurodegeneration, and is important for mediating functions such as learning and memory through the production of acetylcholine. The growing awareness of choline’s importance should encourage all adults to ensure proper choline intake. This is particularly true for those on plant-based diets, which may be low in naturally occurring choline, given that many foods high in choline are eggs, meats, and poultry. Plant-based, choline-rich foods, including soybeans, Brussels sprouts and certain nuts can help boost choline in these cases. Moreover, inexpensive, over-the-counter choline supplements are encouraged to promote overall health and guard the brain from the effects of neurodegeneration. The new study examines mice at 3-12 months, or early to late adulthood (roughly equivalent to 20-60 years of age for humans). In the case of both normal and transgenic mice displaying symptoms of Alzheimer’s, those exposed to a choline-deficient diet exhibited weight gain and adverse effects to their metabolism. Damage to the liver was observed through tissue analysis, as was enlargement of the heart. Elevated soluble, oligomeric and insoluble amyloid-beta protein were d